Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.033
Filtrar
1.
PLoS Negl Trop Dis ; 18(4): e0012103, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38620045

RESUMO

BACKGROUND: The severe late stage Human African Trypanosomiasis (HAT) caused by Trypanosoma brucei rhodesiense (T.b.r) is characterized by damage to the blood brain barrier, severe brain inflammation, oxidative stress and organ damage. Melarsoprol (MelB) is currently the only treatment available for this disease. MelB use is limited by its lethal neurotoxicity due to post-treatment reactive encephalopathy. This study sought to assess the potential of Ginkgo biloba (GB), a potent anti-inflammatory and antioxidant, to protect the integrity of the blood brain barrier and ameliorate detrimental inflammatory and oxidative events due to T.b.r in mice treated with MelB. METHODOLOGY: Group one constituted the control; group two was infected with T.b.r; group three was infected with T.b.r and treated with 2.2 mg/kg melarsoprol for 10 days; group four was infected with T.b.r and administered with GB 80 mg/kg for 30 days; group five was given GB 80mg/kg for two weeks before infection with T.b.r, and continued thereafter and group six was infected with T.b.r, administered with GB and treated with MelB. RESULTS: Co-administration of MelB and GB improved the survival rate of infected mice. When administered separately, MelB and GB protected the integrity of the blood brain barrier and improved neurological function in infected mice. Furthermore, the administration of MelB and GB prevented T.b.r-induced microcytic hypochromic anaemia and thrombocytopenia, as well as T.b.r-driven downregulation of total WBCs. Glutathione analysis showed that co-administration of MelB and GB prevented T.b.r-induced oxidative stress in the brain, spleen, heart and lungs. Notably, GB averted peroxidation and oxidant damage by ameliorating T.b.r and MelB-driven elevation of malondialdehyde (MDA) in the brain, kidney and liver. In fact, the co-administered group for the liver, registered the lowest MDA levels for infected mice. T.b.r-driven elevation of serum TNF-α, IFN-γ, uric acid and urea was abrogated by MelB and GB. Co-administration of MelB and GB was most effective in stabilizing TNFα levels. GB attenuated T.b.r and MelB-driven up-regulation of nitrite. CONCLUSION: Utilization of GB as an adjuvant therapy may ameliorate detrimental effects caused by T.b.r infection and MelB toxicity during late stage HAT.


Assuntos
Ginkgo biloba , Melarsoprol , Estresse Oxidativo , Extratos Vegetais , Trypanosoma brucei rhodesiense , Tripanossomíase Africana , Animais , Camundongos , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ginkgo biloba/química , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Melarsoprol/farmacologia , Masculino , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Modelos Animais de Doenças , Encéfalo/efeitos dos fármacos , Encéfalo/parasitologia , Encéfalo/metabolismo , Encéfalo/patologia , Antioxidantes/farmacologia , Inflamação/tratamento farmacológico
2.
PLoS Comput Biol ; 20(4): e1011993, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557869

RESUMO

The intensification of intervention activities against the fatal vector-borne disease gambiense human African trypanosomiasis (gHAT, sleeping sickness) in the last two decades has led to a large decline in the number of annually reported cases. However, while we move closer to achieving the ambitious target of elimination of transmission (EoT) to humans, pockets of infection remain, and it becomes increasingly important to quantitatively assess if different regions are on track for elimination, and where intervention efforts should be focused. We present a previously developed stochastic mathematical model for gHAT in the Democratic Republic of Congo (DRC) and show that this same formulation is able to capture the dynamics of gHAT observed at the health area level (approximately 10,000 people). This analysis was the first time any stochastic gHAT model has been fitted directly to case data and allows us to better quantify the uncertainty in our results. The analysis focuses on utilising a particle filter Markov chain Monte Carlo (MCMC) methodology to fit the model to the data from 16 health areas of Mosango health zone in Kwilu province as a case study. The spatial heterogeneity in cases is reflected in modelling results, where we predict that under the current intervention strategies, the health area of Kinzamba II, which has approximately one third of the health zone's cases, will have the latest expected year for EoT. We find that fitting the analogous deterministic version of the gHAT model using MCMC has substantially faster computation times than fitting the stochastic model using pMCMC, but produces virtually indistinguishable posterior parameterisation. This suggests that expanding health area fitting, to cover more of the DRC, should be done with deterministic fits for efficiency, but with stochastic projections used to capture both the parameter and stochastic variation in case reporting and elimination year estimations.


Assuntos
Tripanossomíase Africana , Animais , Humanos , Tripanossomíase Africana/epidemiologia , República Democrática do Congo/epidemiologia , Modelos Teóricos , Previsões , Cadeias de Markov , Trypanosoma brucei gambiense
3.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611890

RESUMO

Folk medicine is widely used in Angola, even for human African trypanosomiasis (sleeping sickness) in spite of the fact that the reference treatment is available for free. Aiming to validate herbal remedies in use, we selected nine medicinal plants and assessed their antitrypanosomal activity. A total of 122 extracts were prepared using different plant parts and solvents. A total of 15 extracts from seven different plants exhibited in vitro activity (>70% at 20 µg/mL) against Trypanosoma brucei rhodesiense bloodstream forms. The dichloromethane extract of Nymphaea lotus (leaves and leaflets) and the ethanolic extract of Brasenia schreberi (leaves) had IC50 values ≤ 10 µg/mL. These two aquatic plants are of particular interest. They are being co-applied in the form of a decoction of leaves because they are considered by local healers as male and female of the same species, the ethnotaxon "longa dia simbi". Bioassay-guided fractionation led to the identification of eight active molecules: gallic acid (IC50 0.5 µg/mL), methyl gallate (IC50 1.1 µg/mL), 2,3,4,6-tetragalloyl-glucopyranoside, ethyl gallate (IC50 0.5 µg/mL), 1,2,3,4,6-pentagalloyl-ß-glucopyranoside (IC50 20 µg/mL), gossypetin-7-O-ß-glucopyranoside (IC50 5.5 µg/mL), and hypolaetin-7-O-glucoside (IC50 5.7 µg/mL) in B. schreberi, and 5-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienyl] resorcinol (IC50 5.3 µg/mL) not described to date in N. lotus. Five of these active constituents were detected in the traditional preparation. This work provides the first evidence for the ethnomedicinal use of these plants in the management of sleeping sickness in Angola.


Assuntos
Antiprotozoários , Nymphaea , Tripanossomíase Africana , Humanos , Animais , Angola , Sementes , Antiprotozoários/farmacologia , Extratos Vegetais/farmacologia
4.
Clin Infect Dis ; 78(Supplement_2): S175-S182, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662705

RESUMO

BACKGROUND: Neglected tropical diseases are responsible for considerable morbidity and mortality in low-income populations. International efforts have reduced their global burden, but transmission is persistent and case-finding-based interventions rarely target asymptomatic individuals. METHODS: We develop a generic mathematical modeling framework for analyzing the dynamics of visceral leishmaniasis in the Indian sub-continent (VL), gambiense sleeping sickness (gHAT), and Chagas disease and use it to assess the possible contribution of asymptomatics who later develop disease (pre-symptomatics) and those who do not (non-symptomatics) to the maintenance of infection. Plausible interventions, including active screening, vector control, and reduced time to detection, are simulated for the three diseases. RESULTS: We found that the high asymptomatic contribution to transmission for Chagas and gHAT and the apparently high basic reproductive number of VL may undermine long-term control. However, the ability to treat some asymptomatics for Chagas and gHAT should make them more controllable, albeit over relatively long time periods due to the slow dynamics of these diseases. For VL, the toxicity of available therapeutics means the asymptomatic population cannot currently be treated, but combining treatment of symptomatics and vector control could yield a quick reduction in transmission. CONCLUSIONS: Despite the uncertainty in natural history, it appears there is already a relatively good toolbox of interventions to eliminate gHAT, and it is likely that Chagas will need improvements to diagnostics and their use to better target pre-symptomatics. The situation for VL is less clear, and model predictions could be improved by additional empirical data. However, interventions may have to improve to successfully eliminate this disease.


Assuntos
Infecções Assintomáticas , Doença de Chagas , Leishmaniose Visceral , Modelos Teóricos , Doenças Negligenciadas , Humanos , Doenças Negligenciadas/prevenção & controle , Doenças Negligenciadas/epidemiologia , Doença de Chagas/transmissão , Doença de Chagas/prevenção & controle , Doença de Chagas/epidemiologia , Doença de Chagas/tratamento farmacológico , Infecções Assintomáticas/epidemiologia , Leishmaniose Visceral/prevenção & controle , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/transmissão , Leishmaniose Visceral/tratamento farmacológico , Tripanossomíase Africana/prevenção & controle , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/transmissão , Tripanossomíase Africana/tratamento farmacológico , Índia/epidemiologia , Animais
5.
Tidsskr Nor Laegeforen ; 144(3)2024 Feb 27.
Artigo em Norueguês, Inglês | MEDLINE | ID: mdl-38451073

RESUMO

Background: African sleeping sickness is a neglected tropical disease seldom seen in European travellers. Case presentation: While working in Eastern Africa, a Norwegian man in his sixties developed weakness and fever. He was prescribed doxycycline after a negative malaria rapid test. On the third day of illness he returned to Norway and was admitted to the hospital upon arrival. On admission he was somnolent with fever, tachypnoea, tachycardia, jaundice, a hyperaemic rash, oliguria and haematuria. Blood tests revealed leukopenia, thrombocytopaenia, renal failure and liver dysfunction. Rapid tests were negative for malaria and dengue. Blood microscopy revealed high parasitaemia with trypanosomes indicating human African sleeping-sickness. He had been bitten by a tsetse fly 11 days prior in an area endemic for Trypanosoma brucei gambiense. However, the clinical picture was consistent with Trypanosoma brucei rhodesiense infection (East African sleeping sickness). Four days after starting treatment with suramin, spinal fluid examination revealed mild mononuclear pleocytosis but no visible parasites. Melarsoprol treatment for possible encephalitis was considered but suramin treatment was continued alone. He improved and remains healthy seven years later. PCR on blood was positive for T. b. rhodesiense. Interpretation: African sleeping sickness can also affect tourists to endemic areas. Onset can be acute, life-threatening and requires treatment with antiparasitic drugs not generally available in Norwegian hospitals.


Assuntos
Exantema , Malária , Tripanossomíase Africana , Humanos , Masculino , Doxiciclina , Febre/etiologia , Suramina , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/tratamento farmacológico , Pessoa de Meia-Idade , Idoso
6.
Int J Parasitol Drugs Drug Resist ; 24: 100529, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461700

RESUMO

Earlier evidences showed that diglycosyl diselenides are active against the infective stage of African trypanosomes (top hits IC50 0.5 and 1.5 µM) but poorly selective (selectivity index <10). Here we extended the study to 33 new seleno-glycoconjugates with the aim to improve potency and selectivity. Three selenoglycosides and three glycosyl selenenylsulfides displayed IC50 against bloodstream Trypanosoma brucei in the sub-µM range (IC50 0.35-0.77 µM) and four of them showed an improved selectivity (selectivity index >38-folds vs. murine and human macrohages). For the glycosyl selenylsulfides, the anti-trypanosomal activity was not significantly influenced by the nature of the moiety attached to the sulfur atom. Except for a quinoline-, and to a minor extent a nitro-derivative, the most selective hits induced a rapid (within 60 min) and marked perturbation of the LMWT-redox homeostasis. The formation of selenenylsulfide glycoconjugates with free thiols has been identified as a potential mechanism involved in this process.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Animais , Camundongos , Humanos , Homeostase , Oxirredução , Tripanossomíase Africana/tratamento farmacológico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
7.
Onderstepoort J Vet Res ; 91(1): e1-e6, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38426744

RESUMO

Trypanosomosis is a disease complex which affects both humans and animals in sub-Saharan Africa, transmitted by the tsetse fly and distributed within the tsetse belt of Africa. But some trypanosome species, for example, Trypanosoma brucei evansi, T. vivax, T. theileri and T. b. equiperdum are endemic outside the tsetse belt of Africa transmitted by biting flies, for example, Tabanus and Stomoxys, or venereal transmission, respectively. Trypanocidal drugs remain the principal method of animal trypanosomosis control in most African countries. However, there is a growing concern that their effectiveness may be severely curtailed by widespread drug resistance. A minimum number of six male cattle calves were recruited for the study. They were randomly grouped into two (T. vivax and T. congolense groups) of three calves each. One calf per group served as a control while two calves were treatment group. They were inoculated with 105 cells/mL parasites in phosphate buffered solution (PBS) in 2 mL. When parasitaemia reached 1 × 107.8 cells/mL trypanosomes per mL in calves, treatment was instituted with 20 mL (25 mg/kg in 100 kg calf) ascofuranone (AF) for treatment calves, while the control ones were administered a placebo (20 mL PBS) intramuscularly. This study revealed that T. vivax was successfully cleared by AF but the T. congolense group was not cleared effectively.Contribution: There is an urgent need to develop new drugs which this study sought to address. It is suggested that the AF compound can be developed further to be a sanative drug for T. vivax in non-tsetse infested areas like South Americas.


Assuntos
Sesquiterpenos , Tripanossomicidas , Tripanossomíase Africana , Animais , Bovinos , Masculino , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/veterinária , Tripanossomíase Africana/epidemiologia , Moscas Tsé-Tsé/parasitologia
8.
Res Vet Sci ; 171: 105227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513458

RESUMO

African animal trypanosomosis is a parasitic disease that causes significant economic losses in livestock due to anaemia, loss of condition, emaciation, and mortality. It is a key impediment to increased cattle output and productivity in Ethiopia. Cross-sectional entomological and parasitological studies were performed in the Gambella Region state of southwestern Ethiopia to estimate the prevalence of bovine trypanosomosis, apparent fly density, and potential risk factors. Blood samples were taken from 546 cattle for the parasitological study and analyzed using the buffy coat technique and stained with Giemsa. A total of 189 biconical (89) and NGU (100) traps were deployed in the specified districts for the entomological survey. The overall prevalence of trypanosomosis at the animal level was 5.5% (95% CI: 3.86-7.75). Trypanosoma vivax (50.0%), T. congolense (30.0%), T. brucei (20.0%), and no mixed trypanosome species were found. The prevalence of trypanosomosis was significantly (p < 0.05) affected by altitude, body score conditions, age, mean packed cell volume (PCV), and peasant associations, while sex and coat color had no significant effect. According to the entomological survey results, a total of 2303 flies were captured and identified as tsetse (Glossina pallidipes (5.3%)) and G. fuscipes fuscipes (3.3%) and other biting flies (Tabanus (60.1%) and Stomoxys (31.3%)). In the current study, the overall apparent density was 4.1 flies/trap/day. This study shows that trypanosomosis remains a significant cattle disease in the Gambella regional state even during the dry season. Thus, the findings support the necessity to improve vector and parasite control measures in the area.


Assuntos
Doenças dos Bovinos , Tripanossomíase Africana , Tripanossomíase Bovina , Tripanossomíase , Moscas Tsé-Tsé , Bovinos , Animais , Estudos Transversais , Etiópia/epidemiologia , Moscas Tsé-Tsé/parasitologia , Insetos Vetores , Tripanossomíase Bovina/epidemiologia , Tripanossomíase Bovina/parasitologia , Tripanossomíase/veterinária , Prevalência , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária , Doenças dos Bovinos/epidemiologia
9.
Parasite ; 31: 13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450719

RESUMO

Tsetse flies (genus Glossina) transmit deadly trypanosomes to human populations and domestic animals in sub-Saharan Africa. Some foci of Human African Trypanosomiasis due to Trypanosoma brucei gambiense (g-HAT) persist in southern Chad, where a program of tsetse control was implemented against the local vector Glossina fuscipes fuscipes in 2018 in Maro. We analyzed the population genetics of G. f. fuscipes from the Maro focus before control (T0), one year (T1), and 18 months (T2) after the beginning of control efforts. Most flies captured displayed a local genetic profile (local survivors), but a few flies displayed outlier genotypes. Moreover, disturbance of isolation by distance signature (increase of genetic distance with geographic distance) and effective population size estimates, absence of any genetic signature of a bottleneck, and an increase of genetic diversity between T0 and T2 strongly suggest gene flows from various origins, and a limited impact of the vector control efforts on this tsetse population. Continuous control and surveillance of g-HAT transmission is thus recommended in Maro. Particular attention will need to be paid to the border with the Central African Republic, a country where the entomological and epidemiological status of g-HAT is unknown.


Title: Impact limité de la lutte antivectorielle sur la structure des populations de Glossina fuscipes fuscipes dans le foyer de la maladie du sommeil de Maro, Tchad. Abstract: Les mouches tsé-tsé (genre Glossina) transmettent des trypanosomes mortels aux populations humaines ainsi qu'aux animaux domestiques en Afrique sub-saharienne. Certains foyers de la trypanosomiase humaine Africaine due à Trypanosoma brucei gambiense (THA-g) persistent au sud du Tchad, où un programme de lutte antivectorielle a été mis en place contre le vecteur local de la maladie, Glossina fuscipes fuscipes, en particulier à Maro en 2018. Nous avons analysé la structure génétique des populations de G. f. fuscipes de ce foyer à T0 (avant lutte), une année après le début de la lutte (T1), et 18 mois après (T2). La plupart des mouches capturées après le début de la lutte ont montré un profil génétique local (survivants locaux), mais quelques-unes d'entre elles présentaient des génotypes d'individus atypiques. Par ailleurs, la présence de perturbations des signatures d'isolement par la distance (augmentation de la distance génétique avec la distance géographique), l'absence de signature génétique d'un goulot d'étranglement, et un accroissement de la diversité génétique entre T0 et T2 sont des arguments forts en faveur de la recolonisation de la zone par des mouches d'origines variées, tout en témoignant des effets limités de la campagne de lutte dans ce foyer. Ces résultats conduisent à recommander une lutte et une surveillance continues dans le foyer de Maro. Une attention particulière devra par ailleurs être prêtée à l'autre côté de la rive, située côté République Centre Africaine, dont le statut épidémiologique reste inconnu concernant les tsé-tsé et la THA-g.


Assuntos
Aranhas , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Humanos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé/genética , Chade/epidemiologia , Trypanosoma brucei gambiense/genética , Animais Domésticos
10.
Parasite ; 31: 11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450717

RESUMO

African animal trypanosomosis (AAT) was one of the main disease-related constraints to the development of intensive livestock production systems in the Niayes region of Senegal, a 30 km wide strip of land along the coast between Dakar and Saint-Louis. To overcome this constraint, the Government of Senegal initiated an area-wide integrated pest management programme combining chemical control tactics with the sterile insect technique to eradicate a population of the tsetse fly Glossina palpalis gambiensis Vanderplank, 1949 (Diptera, Glossinidae) in this area. The project was implemented following a phased conditional approach, and the target area was divided into three blocks treated sequentially. This study aims to assess the temporal dynamics of the prevalence of Trypanosoma spp. during the implementation of this programme. Between 2009 and 2022, 4,359 blood samples were collected from cattle and screened for trypanosomes using both the buffy coat and ELISA techniques, and PCR tests since 2020. The seroprevalence decreased from 18.9% (95%CI: 11.2-26.5) in 2009 to 0% in 2017-2022 in block 1, and from 92.9% (95%CI: 88.2-97) in 2010 to 0% in 2021 in block 2. The parasitological and serological data confirm the entomological monitoring results, i.e., that there is a high probability that the population of G. p. gambiensis has been eradicated from the Niayes and that the transmission of AAT has been interrupted in the treated area. These results indicate the effectiveness of the adopted approach and show that AAT can be sustainably removed through the creation of a zone free of G. p. gambiensis.


Title: Trypanosomose animale éliminée dans une importante région de production d'élevage au Sénégal suite à l'éradication d'une population de glossines. Abstract: La trypanosomose animale africaine (TAA) était l'une des principales contraintes pathologiques au développement de systèmes de production animale intensifs dans les Niayes du Sénégal, une bande de terre large de 30 km longeant la côte entre Dakar et Saint-Louis. Pour surmonter cette contrainte, le Gouvernement du Sénégal a lancé un programme de lutte intégrée à l'échelle de la zone combinant lutte chimique et technique de l'insecte stérile pour éradiquer une population de Glossina palpalis gambiensis Vanderplank, 1949 (Diptera, Glossinidae). Le projet a été mis en œuvre selon une approche conditionnelle progressive, et la zone cible a été divisée en trois blocs, traités de manière séquentielle. L'objectif de cette étude était d'évaluer la dynamique temporelle de la prévalence de Trypanosoma spp. au cours de la mise en œuvre du programme. Entre 2009 et 2022, 4 359 échantillons de sang ont été prélevés sur des bovins et ont fait l'objet d'un dépistage des trypanosomes à l'aide des techniques du buffy-coat et ELISA, ainsi que de test PCR depuis 2020. Dans le bloc 1, la séroprévalence est passée de 18,9 % (IC 95 % : 11,2­26,5) en 2009 à 0 % entre 2017­2022 et de 92,9 % (IC 95 % : 88,2-97) en 2010 à 0 % en 2021 pour le block 2. Les données parasitologiques et sérologiques confirment les résultats du suivi entomologique selon lesquels il est très probable que la population de Glossina palpalis gambiensis soit éradiquée des Niayes, et que la transmission de la TAA a été interrompue dans la zone traitée. Elles indiquent l'efficacité de l'approche adoptée, et montrent que la TAA peut être durablement éliminée grâce à la création d'une zone exempte de G. p. gambiensis.


Assuntos
Doenças dos Bovinos , Tripanossomíase Africana , Tripanossomíase , Animais , Bovinos , Gado , Senegal/epidemiologia , Estudos Soroepidemiológicos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Tripanossomíase Africana/veterinária
11.
Parasite ; 31: 15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38520091

RESUMO

Trypanosoma brucei gambiense (Tbg) group 2 is a subgroup of trypanosomes able to infect humans and is found in West and Central Africa. Unlike other agents causing sleeping sickness, such as Tbg group 1 and Trypanosoma brucei rhodesiense, Tbg2 lacks the typical molecular markers associated with resistance to human serum. Only 36 strains of Tbg2 have been documented, and therefore, very limited research has been conducted despite their zoonotic nature. Some of these strains are only available in their procyclic form, which hinders human serum resistance assays and mechanistic studies. Furthermore, the understanding of Tbg2's potential to infect tsetse flies and mammalian hosts is limited. In this study, 165 Glossina palpalis gambiensis flies were experimentally infected with procyclic Tbg2 parasites. It was found that 35 days post-infection, 43 flies out of the 80 still alive were found to be Tbg2 PCR-positive in the saliva. These flies were able to infect 3 out of the 4 mice used for blood-feeding. Dissection revealed that only six flies in fact carried mature infections in their midguts and salivary glands. Importantly, a single fly with a mature infection was sufficient to infect a mammalian host. This Tbg2 transmission success confirms that Tbg2 strains can establish in tsetse flies and infect mammalian hosts. This study describes an effective in vivo protocol for transforming Tbg2 from procyclic to bloodstream form, reproducing the complete Tbg2 cycle from G. p. gambiensis to mice. These findings provide valuable insights into Tbg2's host infectivity, and will facilitate further research on mechanisms of human serum resistance.


Title: Cycle de vie expérimental in vivo de Trypanosoma brucei gambiense groupe 2 : de la forme procyclique à la forme sanguicole. Abstract: Trypanosoma brucei gambiense (Tbg) groupe 2 est un sous-groupe de trypanosomes capables d'infecter l'Homme, présent en Afrique de l'Ouest et en Afrique centrale. Contrairement aux autres agents responsables de la maladie du sommeil, tels que Tbg groupe 1 et Trypanosoma brucei rhodesiense, Tbg2 ne présente pas les marqueurs moléculaires habituellement associés à la résistance au sérum humain. Seules trente-six souches de Tbg2 ont été répertoriées, limitant considérablement les recherches sur ce sous-groupe malgré sa nature zoonotique. Certaines de ces souches ne sont disponibles que sous leur forme procyclique, ce qui freine la réalisation des tests de résistance au sérum humain et les études mécanistiques. De plus, la compréhension du potentiel de Tbg2 à infecter les glossines et les hôtes mammifères est limitée. Dans cette étude, 165 glossines Glossina palpalis gambiensis ont été infectées expérimentalement par des parasites Tbg2 sous leur forme procyclique. Trente-cinq jours après l'infection, 43 des 80 glossines encore en vie se sont révélées positives à Tbg2 en PCR sur leur salive. Ces glossines ont réussi à infecter trois des quatre souris utilisées pour leur repas de sang. La dissection des glossines a révélé que seules six d'entre elles étaient réellement porteuses d'infections matures dans leur intestin et leurs glandes salivaires. Il est important de noter qu'une seule glossine porteuse d'une infection mature a suffi pour infecter un hôte mammifère. Ce succès de transmission de Tbg2 confirme que les souches de Tbg2 peuvent s'établir dans les glossines et infecter des hôtes mammifères. Cette étude décrit un protocole in vivo pour transformer la forme procyclique de Tbg2 en forme sanguicole, en reproduisant le cycle complet de Tbg2 de G. p. gambiensis à la souris. Ces résultats fournissent des informations précieuses sur le potentiel infectieux de Tbg2 et faciliteront la recherche sur les mécanismes de résistance au sérum humain des souches.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Humanos , Camundongos , Trypanosoma brucei gambiense , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/parasitologia , Estágios do Ciclo de Vida , Mamíferos
12.
PLoS Negl Trop Dis ; 18(2): e0011985, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377123

RESUMO

Strategies to detect Human African Trypanosomiasis (HAT) cases rely on serological screening of populations exposed to trypanosomes. In Guinea, mass medical screening surveys performed with the Card Agglutination Test for Trypanosomiasis have been progressively replaced by door-to-door approaches using Rapid Diagnostic Tests (RDTs) since 2016. However, RDTs availability represents a major concern and medical teams must often adapt, even in the absence of prior RDT performance evaluation. For the last 5 years, the Guinean HAT National Control Program had to combine three different RDTs according to their availability and price: the SD Bioline HAT (not available anymore), the HAT Sero-K-SeT (most expensive), and recently the Abbott Bioline HAT 2.0 (limited field evaluation). Here, we assess the performance of these RDTs, alone or in different combinations, through the analysis of both prospective and retrospective data. A parallel assessment showed a higher positivity rate of Abbott Bioline HAT 2.0 (6.0%, n = 2,250) as compared to HAT Sero-K-SeT (1.9%), with a combined positive predictive value (PPV) of 20.0%. However, an evaluation of Abbott Bioline HAT 2.0 alone revealed a low PPV of 3.9% (n = 6,930) which was surpassed when using Abbott Bioline HAT 2.0 in first line and HAT Sero-K-SeT as a secondary test before confirmation, with a combined PPV reaching 44.4%. A retrospective evaluation of all 3 RDTs was then conducted on 189 plasma samples from the HAT-NCP biobank, confirming the higher sensitivity (94.0% [85.6-97.7%]) and lower specificity (83.6% [76.0-89.1%]) of Abbott Bioline HAT 2.0 as compared to SD Bioline HAT (Se 64.2% [52.2-74.6%]-Sp 98.4% [94.2-99.5%]) and HAT Sero-K-SeT (Se 88.1% [78.2-93.8%]-Sp 98.4% [94.2-99.5%]). A comparison of Abbott Bioline HAT 2.0 and malaria-RDT positivity rates on 479 subjects living in HAT-free malaria-endemic areas further revealed that a significantly higher proportion of subjects positive in Abbott Bioline HAT 2.0 were also positive in malaria-RDT, suggesting a possible cross-reaction of Abbott Bioline HAT 2.0 with malaria-related biological factors in about 10% of malaria cases. This would explain, at least in part, the limited specificity of Abbott Bioline HAT 2.0. Overall, Abbott Bioline HAT 2.0 seems suitable as first line RDT in combination with a second HAT RDT to prevent confirmatory lab overload and loss of suspects during referral for confirmation. A state-of-the-art prospective comparative study is further required for comparing all current and future HAT RDTs to propose an optimal combination of RDTs for door-to-door active screening.


Assuntos
Malária , Tripanossomíase Africana , Humanos , Animais , Tripanossomíase Africana/diagnóstico , Papua Nova Guiné , Estudos Prospectivos , Estudos Retrospectivos
13.
J Med Chem ; 67(5): 3437-3447, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38363074

RESUMO

Human African trypanosomiasis (HAT), a neglected tropical disease caused by Trypanosoma brucei gambiense (Tbg) or Trypanosoma brucei rhodesiense (Tbr), remains a significant public health concern with over 55 million people at risk of infection. Current treatments for HAT face the challenges of poor efficacy, drug resistance, and toxicity. This study presents the synthesis and evaluation of chloronitrobenzamides (CNBs) against Trypanosoma species, identifying previously reported compound 52 as a potent and selective orally bioavailable antitrypanosomal agent. 52 was well tolerated in vivo and demonstrated favorable oral pharmacokinetics, maintaining plasma concentrations surpassing the cellular EC50 for over 24 h and achieving peak brain concentrations exceeding 7 µM in rodents after single oral administration (50 mg/kg). Treatment with 52 significantly extended the lifespan of mice infected with Trypanosoma congolense and T. brucei rhodesiense. These results demonstrate that 52 is a strong antitrypanosomal lead with potential for developing treatments for both human and animal African trypanosomiasis.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Humanos , Animais , Camundongos , Tripanossomíase Africana/tratamento farmacológico , Trypanosoma brucei rhodesiense , Trypanosoma brucei gambiense , Tripanossomicidas/toxicidade , Tripanossomicidas/uso terapêutico
14.
Exp Parasitol ; 259: 108711, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355002

RESUMO

Animal African trypanosomosis (AAT) is a disease caused by Trypanosoma brucei brucei, T. vivax, T. evansi and T. congolense which are mainly transmitted by tsetse flies (maybe the family/genus scientific name for the tsetse flies here?). Synthetic trypanocidal drugs are used to control AAT but have reduced efficacy due to emergence of drug resistant trypanosomes. Therefore, there is a need for the continued development of new safe and effective drugs. The aim of this study was to evaluate the in vitro anti-trypanosomal activity of novel nitrofurantoin compounds against trypanosomes (Trypanosoma brucei brucei, T. evansi and T. congolense) causing AAT. This study assessed previously synthesized nineteen nitrofurantoin-triazole (NFT-TZ) hybrids against animal trypanosomes and evaluated their cytotoxicity using Madin-Darby bovine kidney cells. The n-alkyl sub-series hybrids, 8 (IC50 0.09 ± 0.02 µM; SI 686.45) and 9 (IC50 0.07 ± 0.04 µM; SI 849.31) had the highest anti-trypanosomal activity against T. b. brucei. On the contrary, the nonyl 6 (IC50 0.12 ± 0.06 µM; SI 504.57) and nitrobenzyl 18 (IC50 0.11 ± 0.03 µM; SI 211.07) displayed the highest trypanocidal activity against T. evansi. The nonyl hybrid 6 (IC50 0.02 ± 0.01 µM; SI 6328.76) was also detected alongside the undecyl 8 (IC50 0.02 ± 0.01 µM; SI 3454.36) and 3-bromobenzyl 19 (IC50 0.02 ± 0.01 µM; SI 2360.41) as the most potent hybrids against T. congolense. These hybrids had weak toxicity effects on the mammalian cells and highly selective submicromolar antiparasitic action efficacy directed towards the trypanosomes, hence they can be regarded as potential trypanocidal leads for further in vivo investigation.


Assuntos
Trypanosoma brucei brucei , Trypanosoma congolense , Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Bovinos , Nitrofurantoína/farmacologia , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/veterinária , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/parasitologia , Mamíferos
15.
Eur J Med Chem ; 268: 116162, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394930

RESUMO

Human African trypanosomiasis (HAT), or sleeping sickness, is a neglected tropical disease with current treatments marred by severe side effects or delivery issues. To identify novel classes of compounds for the treatment of HAT, high throughput screening (HTS) had previously been conducted on bloodstream forms of T. b. brucei, a model organism closely related to the human pathogens T. b. gambiense and T. b. rhodesiense. This HTS had identified a number of structural classes with potent bioactivity against T. b. brucei (IC50 ≤ 10 µM) with selectivity over mammalian cell-lines (selectivity index of ≥10). One of the confirmed hits was an aroyl guanidine derivative. Deemed to be chemically tractable with attractive physicochemical properties, here we explore this class further to develop the SAR landscape. We also report the influence of the elucidated SAR on parasite metabolism, to gain insight into possible modes of action of this class. Of note, two sub-classes of analogues were identified that generated opposing metabolic responses involving disrupted energy metabolism. This knowledge may guide the future design of more potent inhibitors, while retaining the desirable physicochemical properties and an excellent selectivity profile of the current compound class.


Assuntos
Parasitos , Tripanossomicidas , Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Animais , Humanos , Tripanossomicidas/química , Trypanosoma brucei rhodesiense , Guanidina/farmacologia , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Guanidinas/farmacologia , Metabolismo Energético , Mamíferos
16.
Metabolomics ; 20(2): 25, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393408

RESUMO

INTRODUCTION: Human African trypanosomiasis, commonly known as sleeping sickness, is a vector-borne parasitic disease prevalent in sub-Saharan Africa and transmitted by the tsetse fly. Suramin, a medication with a long history of clinical use, has demonstrated varied modes of action against Trypanosoma brucei. This study employs a comprehensive workflow to investigate the metabolic effects of suramin on T. brucei, utilizing a multimodal metabolomics approach. OBJECTIVES: The primary aim of this study is to comprehensively analyze the metabolic impact of suramin on T. brucei using a combined liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) approach. Statistical analyses, encompassing multivariate analysis and pathway enrichment analysis, are applied to elucidate significant variations and metabolic changes resulting from suramin treatment. METHODS: A detailed methodology involving the integration of high-resolution data from LC-MS and NMR techniques is presented. The study conducts a thorough analysis of metabolite profiles in both suramin-treated and control T. brucei brucei samples. Statistical techniques, including ANOVA-simultaneous component analysis (ASCA), principal component analysis (PCA), ANOVA 2 analysis, and bootstrap tests, are employed to discern the effects of suramin treatment on the metabolomics outcomes. RESULTS: Our investigation reveals substantial differences in metabolic profiles between the control and suramin-treated groups. ASCA and PCA analysis confirm distinct separation between these groups in both MS-negative and NMR analyses. Furthermore, ANOVA 2 analysis and bootstrap tests confirmed the significance of treatment, time, and interaction effects on the metabolomics outcomes. Functional analysis of the data from LC-MS highlighted the impact of treatment on amino-acid, and amino-sugar and nucleotide-sugar metabolism, while time effects were observed on carbon intermediary metabolism (notably glycolysis and di- and tricarboxylic acids of the succinate production pathway and tricarboxylic acid (TCA) cycle). CONCLUSION: Through the integration of LC-MS and NMR techniques coupled with advanced statistical analyses, this study identifies distinctive metabolic signatures and pathways associated with suramin treatment in T. brucei. These findings contribute to a deeper understanding of the pharmacological impact of suramin and have the potential to inform the development of more efficacious therapeutic strategies against African trypanosomiasis.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Humanos , Suramina/farmacologia , Suramina/metabolismo , Suramina/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Metabolômica/métodos , Trypanosoma brucei brucei/metabolismo , Fluxo de Trabalho
17.
Parasit Vectors ; 17(1): 52, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308365

RESUMO

BACKGROUND: Tsetse flies (Glossina spp.) are the definitive biological vectors of African trypanosomes in humans and animals. Controlling this vector is the most promising method of preventing trypanosome transmission. This requires a comprehensive understanding of tsetse biology and host preference to inform targeted design and management strategies, such as the use of olfaction and visual cues in tsetse traps. No current review exists on host preference and blood meal analyses of tsetse flies. METHODS: This review presents a meta-analysis of tsetse fly blood meal sources and the methodologies used to identify animal hosts from 1956 to August 2022. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRIMA-ScR) was applied. This focused on tsetse-endemic countries, blood meal analysis methodologies and the blood meal hosts identified. The articles were retrieved and screened from databases using predetermined eligibility criteria. RESULTS: Only 49/393 of the articles retrieved matched the inclusion criteria. Glossina's main hosts in the wild included the bushbuck, buffalo, elephant, warthog, bushpig and hippopotamus. Pigs, livestock and humans were key hosts at the domestic interface. The least studied species included Glossina fuscipleuris, G. fusca, G. medicorum, G. tabaniformis and G. austeni. In the absence of preferred hosts, Glossina fed opportunistically on a variety of hosts. Precipitin, haemagglutination, disc diffusion, complement fixation, ELISA and PCR-based assays were used to evaluate blood meals. Cytochrome b (Cyt b) was the main target gene in PCR to identify the vertebrate hosts. CONCLUSIONS: Tsetse blood meal sources have likely expanded because of ecological changes that could have rendered preferred hosts unavailable. The major approaches for analysing tsetse fly blood meal hosts targeted Cyt b gene for species identification by Sanger sequencing. However, small-fragment DNAs, such as the mammalian 12S and 16S rRNA genes, along with second- and third-generation sequencing techniques, could increase sensitivity for host identification in multiple host feeders that Sanger sequencing may misidentify as "noise". This review of tsetse fly blood meal sources and approaches to host identification could inform strategies for tsetse control.


Assuntos
Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Humanos , Citocromos b , Mamíferos/genética , RNA Ribossômico 16S , Suínos , Trypanosoma/genética , Moscas Tsé-Tsé/genética
18.
Nat Commun ; 15(1): 1779, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413606

RESUMO

Human African trypanosomiasis or sleeping sickness, caused by the protozoan parasite Trypanosoma brucei, is characterized by the manipulation of the host's immune response to ensure parasite invasion and persistence. Uncovering key molecules that support parasite establishment is a prerequisite to interfere with this process. We identified Q586B2 as a T. brucei protein that induces IL-10 in myeloid cells, which promotes parasite infection invasiveness. Q586B2 is expressed during all T. brucei life stages and is conserved in all Trypanosomatidae. Deleting the Q586B2-encoding Tb927.6.4140 gene in T. brucei results in a decreased peak parasitemia and prolonged survival, without affecting parasite fitness in vitro, yet promoting short stumpy differentiation in vivo. Accordingly, neutralization of Q586B2 with newly generated nanobodies could hamper myeloid-derived IL-10 production and reduce parasitemia. In addition, immunization with Q586B2 delays mortality upon a challenge with various trypanosomes, including Trypanosoma cruzi. Collectively, we uncovered a conserved protein playing an important regulatory role in Trypanosomatid infection establishment.


Assuntos
Trypanosoma brucei brucei , Trypanosoma cruzi , Tripanossomíase Africana , Animais , Humanos , Trypanosoma brucei brucei/genética , Interleucina-10/genética , Fatores de Virulência , Parasitemia/parasitologia , Tripanossomíase Africana/parasitologia
19.
J Med Chem ; 67(4): 2849-2863, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38330051

RESUMO

Human African trypanosomiasis (HAT) still faces few therapeutic options and emerging drug resistance, stressing an urgency for novel antitrypanosomal drug discovery. Here, we describe lead optimization efforts aiming at improving antitrypanosomal efficacy and better physicochemical properties based on our previously reported optimized hit NPD-2975 (pIC50 7.2). Systematic modification of the 5-phenylpyrazolopyrimidinone NPD-2975 led to the discovery of a R4-substituted analogue 31c (NPD-3519), showing higher in vitro potency (pIC50 7.8) against Trypanosoma brucei and significantly better metabolic stability. Further, in vivo pharmacokinetic evaluation of 31c and experiments in an acute T. brucei mouse model confirmed improved oral bioavailability and antitrypanosomal efficacy at 50 mg/kg with no apparent toxicity. With good physicochemical properties, low toxicity, improved pharmacokinetic features, and in vivo efficacy, 31c may serve as a promising candidate for future drug development for HAT.


Assuntos
Antiprotozoários , Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Camundongos , Humanos , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Antiprotozoários/uso terapêutico , Desenvolvimento de Medicamentos
20.
Sci Rep ; 14(1): 4158, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378867

RESUMO

Animal African trypanosomiasis (AAT) is a significant food security and economic burden in sub-Saharan Africa. Current AAT empirical and immunodiagnostic surveillance tools suffer from poor sensitivity and specificity, with blood sampling requiring animal restraint and trained personnel. Faecal sampling could increase sampling accessibility, scale, and species range. Therefore, this study assessed feasibility of detecting Trypanosoma DNA in the faeces of experimentally-infected cattle. Holstein-Friesian calves were inoculated with Trypanosoma brucei brucei AnTat 1.1 (n = 5) or T. congolense Savannah IL3000 (n = 6) in separate studies. Faecal and blood samples were collected concurrently over 10 weeks and screened using species-specific PCR and qPCR assays. T. brucei DNA was detected in 85% of post-inoculation (PI) faecal samples (n = 114/134) by qPCR and 50% by PCR between 4 and 66 days PI. However, T. congolense DNA was detected in just 3.4% (n = 5/145) of PI faecal samples by qPCR, and none by PCR. These results confirm the ability to consistently detect T. brucei DNA, but not T. congolense DNA, in infected cattle faeces. This disparity may derive from the differences in Trypanosoma species tissue distribution and/or extravasation. Therefore, whilst faeces are a promising substrate to screen for T. brucei infection, blood sampling is required to detect T. congolense in cattle.


Assuntos
Trypanosoma brucei brucei , Trypanosoma congolense , Trypanosoma , Tripanossomíase Africana , Humanos , Bovinos , Animais , Trypanosoma brucei brucei/genética , Trypanosoma congolense/genética , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/veterinária , Tripanossomíase Africana/epidemiologia , Trypanosoma/genética , DNA , Fezes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...